PAT A1130:Infix Expression(二叉树)

可能是全网唯一一个不用顺序表而用二叉树递归生成的方式构造本题

题目内容

Given a syntax tree (binary), you are supposed to output the corresponding infix expression, with parentheses reflecting the precedences of the operators.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer $N (\leqslant 20)$ which is the total number of nodes in the syntax tree. Then $N$ lines follow, each gives the information of a node (the i-th line corresponds to the i-th node) in the format:

data left_child right_child

where data is a string of no more than 10 characters, left_child and right_child are the indices of this node’s left and right children, respectively. The nodes are indexed from 1 to $N$. The NULL link is represented by −1. The figures 1 and 2 correspond to the samples 1 and 2, respectively.

Output Specification:

For each case, print in a line the infix expression, with parentheses reflecting the precedences of the operators. Note that there must be no extra parentheses for the final expression, as is shown by the samples. There must be no space between any symbols.

Sample Input 1:

8
* 8 7
a -1 -1
* 4 1
+ 2 5
b -1 -1
d -1 -1
- -1 6
c -1 -1

Sample Output 1:

(a+b)*(c*(-d))

Sample Input 2:

8
2.35 -1 -1
* 6 1
- -1 4
% 7 8
+ 2 3
a -1 -1
str -1 -1
871 -1 -1

Sample Output 2:

(a*2.35)+(-(str%871))

题目要点

本题 25 分,

AC 源代码

通过递归而不是有序表(向量、列表)建树,用中序遍历输出中缀表达式

class BTNode:
    def __init__(self, val):
        self.val = val
        self.left = None
        self.right = None

class BT():
    def insert(self, root, node, index):
        val, left, right = node[index][0], node[index][1], node[index][2]
        if left != -1:
            root.left = BTNode(node[left][0])
            root.left = self.insert(root.left, node, left)
        if right != -1:
            root.right = BTNode(node[right][0])
            root.right = self.insert(root.right, node, right)
        return root

    def in_order(self, root, lst, depth):
        if root == None: return
        if depth and (root.left or root.right): lst.append('(')
        self.in_order(root.left, lst, depth+1)
        lst.append(root.val)
        self.in_order(root.right, lst, depth+1)
        if depth and (root.left or root.right): lst.append(')')

def find_root(nodes):
    pool = set([i+1 for i in range(len(nodes))])
    for node in nodes:
        pool -= set(node[1:])
    return pool.pop()


nodes = []
result = []
count = int(input())
for _ in range(count):
    val, left, right = input().split()
    nodes.append((val, int(left), int(right)))

head = find_root(nodes)
nodes.insert(0, head)

bt = BT()
tree = BTNode(nodes[head][0])
bt.insert(tree, nodes, head)
bt.in_order(tree, result, 0)
print(''.join(result))

参考来源

https://www.amoshuang.com/archives/589

https://blog.csdn.net/galesaur_wcy/article/details/82354161

https://www.liuchuo.net/archives/3798

https://blog.csdn.net/weixin_43307431/article/details/104364778